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Review Article
Alteration of circadian rhythm during epileptogenesis: 
implications for the suprachiasmatic nucleus circuits
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Abstract: It is important to realize that characterization of the circadian rhythm patterns of seizure occurrence can 
implicate in diagnosis and treatment of selected types of epilepsy. Evidence suggests a role for the suprachias-
matic nucleus (SCN) circuits in overall circadian rhythm and seizure susceptibility both in animals and humans. 
Thus, we conclude that SCN circuits may exert modifying effects on circadian rhythmicity and neuronal excitability 
during epileptogenesis. SCN circuits will be studied in our brain centre and collaborating centres to explore further 
the interaction between the circadian rhythm and epileptic seizures. More and thorough research is warranted to 
provide insight into epileptic seizures with circadian disruption comorbidities such as disorders of cardiovascular 
parameters and core body temperature circadian rhythms.
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Epilepsy and the alterations of circadian 
rhythm

Epilepsy is a particularly complex neurological 
disorder. It has been known for over 100 years 
that seizure occurrence relies on involvement 
of the diurnal, nocturnal and diffuse [1, 2]. It is 
now well appreciated that there exists a close 
link between epileptic seizures and the altera-
tions of circadian rhythm regulation in human 
and animals [3-10]. Quigg et al found that 
postlimbic status (PLS) in patients (n=64) and 
mesial temporal lobe epilepsy (MTLE) in rats 
(n=20) occurred more often during light than 
dark, and between human MTLE and rat PLS 
had chronological similarity or similar cosinor 
daily distributions, suggesting that limbic sei-
zure occurrence implicates in the circadian 
regulatory system [11]. By retrospectively ana-
lyzing intracranial EEG recordings, Durazzo et al 
determined whether seizure occurrence in par-
tial epilepsy was under the influence of circa- 
dian rhythms and how this influence varied 
according to cortical brain region, and indicat-
ed that occipital and temporal lobe seizures 
had most likely to occur in the afternoon, 
whereas frontal and parietal lobe seizures had 

strong nocturnal preferences, suggesting that 
the roles of endogenous circadian rhythms in 
seizure occurrence vary considerably according 
to brain region [12]. Hofstra et al reported a 
prospective pilot study about timing of temporal 
and frontal seizures in relation to the circadian 
phase, and indicated that the temporal and 
frontal seizures occurred in a non-random fash-
ion synchronized to a hormonal marker of the 
circadian timing system, suggesting that the 
seizure occurrence has a relation to the circa-
dian regulatory system [13]. 

Epilepsy and suprachiasmatic nucleus

Many studies focused on the suprachiasmatic 
nucleus (SCN) neurons as the central pacemak-
er of biological clock [14]. It is well-established 
that neurons from SCN of the hypothalamus 
modulate and control the circadian rhythm pat-
tern [15]. As the central pacemaker, the SCN 
has long been considered the primary regul- 
ator of biological circadian rhythm. The altera-
tions of synaptic transmission in the SCN likely 
contribute to circadian rhythm disturbances 
and sleep disorder [16]. Hablitz et al reported 
that G protein-coupled inwardly rectifying (GIRK) 
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channel signaling within the central circadian 
oscillator SCN might implicate in circadian dis-
orders with epilepsy and addiction [17, 18]. A 
report from Han et al demonstrated that the 
voltage-gated Na (+) channel 1.1 [Na(V)1.1] 
and its associated impairment of SCN inter- 
neuronal communication led to major deficits 
in the SCN function, and heterozygous loss of 
Na(V)1.1 channels is the underlying cause for 
severe myoclonic epilepsy of infancy, suggest-
ing that the circadian deficits in the SCN may 
contribute to sleep disorders in severe myo-
clonic epilepsy of infancy patients [5].

Our research data about suprachiasmatic 
nucleus circuits

Neurotropic pseudorabies viruses (PRV) have 
become particularly important tools for tran-
synaptic analysis of neural circuits [19-34]. 

There is strong evidence that the infection with 
PRV expressing unique reporters can be used 
to define more complicated circuitry [35-41]. 
We used PRV-614 into the kidney for exploring 
the suprachiasmatic nucleus circuits in adult 
male MC4R-green fluorescent protein (GFP) 
transgenic mice, and found that PRV-614/
MC4R-GFP dual-labeled neurons were detect-
ed in the IML, PVN and SCN (Figure 1). Because 
there is no evidence that the parasympathetic 
and motor nervous system provides any inner-
vations to the kidney, the brain neurons (SCN, 
PVN) were infected with PRV-614 via the sym-
pathetic nervous system, suggesting that there 
may exist a direct SCN-PVN-IML circuit involv-
ing in melanocortinergic-sympathetic pathway.

Otherwise, PRV-614 injected into the left ven-
tricular wall of the heart was specifically trans-
ported to (1) the DMV, NTS, PVN and SCN 

Figure 1. Transverse sections of the hypothalamus in the region of the paraventricular nucleus (PVN), suprachi-
asmatic nucleus (SCN), or spinal cord. Pseudorabies virus (PRV-614) was injected into the kidneys in adult male 
MC4R-green fluorescent protein (GFP) transgenic mice. PRV-614/MC4R-GFP dual-labeled neurons were detected in 
the SCN (C), PVN (F) and IML (I). (A, D, G) Showed MC4R-GFP positive cells; (B, E, H) Showed PRV-614- labeled cells; 
(C, F, I) Showed overlaid images of (A and B, D and E, G and H). 3V, 3rd ventricle; MC4R, melanocortin-4 receptor; 
CC, central autonomic nucleus; IML, intermediolateral cell column. Arrows indicated double-labeled neurons. Some 
drawings were taken from HB Xiang. Scale bars, 50 μm.
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(Figure 2) by parasympathetic pathway, sug-
gesting that there may be a link between SCN 
and heart by parasympathetic pathway (Figure 
2); (2) the IML, PVN and SCN, suggesting that 
there may exist a direct SCN-PVN-IML circuit 
between SCN and heart involving in sympathet-
ic pathway (Figure 2).

Suprachiasmatic nucleus circuits implicating 
the seizure-induced the alteration of circadian 
rhythm

It is important to realize that characterization of 
the circadian rhythm patterns of seizure occur-
rence can implicate in diagnosis and treatment 
of selected types of epilepsy [42-46]. Evidence 
suggests a role for SCN circuits in overall circa-
dian rhythm (including core body temperature 
rhythms and circadian rhythms in cardiovascu-
lar parameters) and seizure susceptibility both 
in animals and humans [4, 47-49]. Thus, we 
conclude that SCN circuits may exert modifying 
effects on circadian rhythmicity and neuronal 
excitability during epileptogenesis. SCN circuits 
will be studied in our brain centre and collabo-
rating centres to explore further the interaction 
between the circadian rhythm and epileptic sei-
zures. More and thorough research is warrant-
ed to provide insight into epileptic seizures with 

circadian disruption comorbidities such as dis-
orders of cardiovascular parameters and core 
body temperature circadian rhythms.
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