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Compared to saline, low-dose ethanol (0.25 g/
kg, i.p.) significantly increased the percentage 
of LHb cells that were stained with both vGluT2 
and cFos (t (1,8)=14.2, p < 0.001, n=5 rats/
group, 3-4 sections/rats). Consistent with the 
immunohistochemistry result, the eGFP-labe- 

led LH axon fibers and terminals seen around 
these cells looked dense and patchy. High- 
magnification confocal imaging found that 
eGFP+ terminals made contacts with LHb cFos 
IR cell bodies (confirmed by 32 deconvoluted 
stacks, Figure 5A, 5B). Remarkably, eGFP+ ter-

Figure 4. Ethanol-activated LHb neurons receive inputs from the lateral hypothalamus (LH). AAV5-CaMKIIa-eGFP 
was infused into the LH of rats, 2-3 weeks before ethanol (0.25 g/kg, i.p.) or saline (1 ml/kg, i.p.). Brain slices 
containing the LH and the LHb were harvested 90 min post-i.p.-injections. (A) Schematic showed the AAV synaptic 
labeling tracing approach. (B) A confocal image of a coronal section illustrating the expression of AAV-eGFP in a 
brain slice containing both the LH and LHb (counterstained with DAPI). (C) High-resolution images of AAV-mediated 
expression of CaMKIIa-eGFP in LH neurons. (D) Confocal images demonstrated the overlap of ethanol-activated 
cFos+ (red) with vGluT2 staining (blue). Notably, a lot of eGFP+ (green) fibers were overlapped with the cell bodies 
(dotted white outlines), and a few vGluT2+ cells targeted by LH terminals were cFos- (white outlines). (E) Summary 
graph of LH-LHb eGFP fluorescence intensity in and around the LHb. MHb, medial habenula; PVP, posterior part of 
paraventricular thalamic nucleus; ***p < 0.001, vs. LHb; ̂ ^^p < 0.001, vs. PVP. (F) Summary graph: ethanol treatment 
increased the percentage of cFos and vGluT2 co-localized cells/vGluT2 cells in LHb. ***p < 0.001, vs. Saline, n=5, 
unpaired t-test. Scale bar =200 μm (B), 20 μm (C & D).
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minals containing vGluT2 also made contact 
with LHb cFos IR cell bodies (Figure 5C, 5D). 
These results suggest that ethanol-activated 
LHb neurons receive excitatory inputs from the 
LH.

Discussion 

In this study, we identified circuits connecting 
to LHb neurons that were activated by a low-

The cFos approach has its caveat. Specifically, 
cFos expression is particularly sensitive to 
stimuli that induce stress [40]. Additionally, 
LHb neurons have been shown to be excited 
[41] or inhibited by nociceptive stimuli [42]. 
Several studies indicated that different forms 
of stress, such as foot shock and water depriva-
tion can activate LHb neurons [43, 44]. To mini-
mize potential false positive results caused by 

Figure 5. Three-dimensional confocal images of LH axonal terminations in 
LHb vGluT2 cells expressing ethanol-induced cFos from rats that received 
an intra-LH injection of AAV5-CaMKIIa-eGFP, and ethanol (0.25 g/kg, i.p.) 2-3 
weeks later. (A-D), show the LHb vGluT2+ cells (blue) expressing cFos (red), 
were contacted by axonal buttons (green) from the LH. Square boxes indicate 
the locations of the contacts. (A1-D1) show enlarged xy-, yz-, and xz- orthogo-
nal views. Notably, (C, D) show the LH axonal varicosities expressing vGluT2 
and, forming contact on LHb cFos+ cells. Since the confocal laser-scanning 
microscope generates in-focus images of selected depth, projection phenom-
ena, in the conventional fluorescence microscope can be ruled out. Scale bars 
=10 μm (A-D) and 5 μm (A1-D1).

dose of ethanol. Ethanol 
(0.25 g/kg, i.p.), producing a 
BEC of 5.6 mM, significantly 
increased the number of 
cFos IR cells in the LHb. Most 
of these neurons expressed 
vGluT2, indicating that they 
were glutamatergic. These 
ethanol-activated LHb cells 
project to the VTA, RMTg, 
and DR, and receive excit-
atory projections from the 
LH. These results provide 
new insight into the targets 
of low-dose ethanol at the 
cellular and circuit levels.

cFos has been widely used 
as an anatomical marker of 
cell activity. After exposure 
to a stimulus, such as etha-
nol, a transient induction of 
cFos occurs [37, 38], and the 
change in cFos expression 
between subjects exposed 
to the stimulus and those in 
basal conditions indicates a 
difference in neuronal activi-
ty. Here, we showed that low-
dose ethanol (0.25 g/kg, i.p.) 
significantly increased cFos 
expression in the LHb, indi-
cating that LHb neurons are 
sensitive to ethanol [25]. 
Additionally, we examined 
the time course of cFos ex- 
pression in response to etha-
nol and found it peaked at 
90 min and returned near 
control levels by 8 hours, 
consistent with a previous 
study examining different 
brain regions [39]. 
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stress, we habituated all the rats to handling 
and the injection procedure before cFos 
experiments. 

Given that cFos expression level was very low in 
the LHb of saline-treated animals, the elevated 
cFos expression in the ethanol group was likely 
a result of the pharmacological effects of etha-
nol. We also acknowledge the limitation regard-
ing the passive administration of ethanol by 
intraperitoneal injection. Compared to volun-
tary drinking, however, injection may provide 
better control over the resulting BEC. Still, this 
route of administration cannot emulate the use 
of alcohol in humans. Therefore, future studies 
should test the response of LHb neurons in 
relation to voluntary consumption of alcohol in 
an animal model. 

Functional significance of LHb output circuits 
in ethanol-related behaviors

Although recent evidence has associated alco-
hol’s aversive properties with its abuse, the 
underlying neuronal mechanisms remain 
unclear. The LHb has emerged as a critical 
brain region in aversion response, as it is acti-
vated by aversive signals such as depression, 
anxiety, and abused drugs including alcohol. 
We observed that the LHb neurons activated by 
a single injection of low-dose ethanol projected 
to the VTA, RMTg, and DR, confirming the effer-
ent fibers from LHb to the midbrain [45, 46]. 
Ethanol-activated LHb neurons are vGluT2 posi-
tive, consistent with the molecular characteris-
tics of LHb neurons that were almost uniformly 
glutamatergic [12]. In this study, we did not 
identify the neuronal type of VTA and RMTg 
neurons that receive inputs from ethanol-excit-
ed LHb cells. However, previous studies have 
documented that LHb neurons form excitatory 
synapses onto VTA-GABAergic interneurons 
[47, 48], and dopaminergic neurons [29, 48, 
49], as well as RMTg-GABAergic neurons [30]. 
Functionally, VTA-dopaminergic neurons have 
been widely reported in motivation and reward 
behavior [50], as well as in aversion [51, 52]. 
Moreover, VTA-GABAergic neurons drive aver-
sion [53]. Furthermore, the RMTg encodes 
aversion [54] and responds to negative reward 
[55], as well as drugs of abuse [56]. Based on 
these findings, we propose that activation of 
LHb neurons or their midbrain output circuits 
(LHb to VTA/RMTg) may be associated with eth-
anol’s aversive properties. This hypothesis is 

supported by our recent report that ethanol 
drives aversive conditioning through the activa-
tion of LHb neurons [25]. Recent evidence has 
linked the RMTg to ethanol-related behaviors. 
For example, RMTg cFos expression was elevat-
ed in rats subjected to ethanol-induced condi-
tion taste aversion (CTA) [20]. Also, RMTg 
lesions accelerated the extinction of ethanol-
induced CTA [57] and pharmacological inhibi-
tion or lesion of the RMTg enhanced ethanol 
consumption in rats [34, 57, 58]. Together, 
these results suggest that the RMTg contrib-
utes to the aversive properties of alcohol. 
However, more studies are needed to further 
investigate the function of the LHb-VTA or LHb-
RMTg circuit in ethanol-related aversive 
behaviors. 

Emerging evidence has demonstrated a role for 
the serotonin-rich DR in mediating alcohol 
reward, preference, dependence, and craving. 
Here we showed that acute ethanol activated 
the LHb-DR circuit. Acute ethanol has also 
been shown to inhibit DR serotoninergic neu-
rons [59, 61], but can elevate 5-HT levels in 
their target areas [61, 62]. The possible inter-
pretations of these conflicting findings could  
be that the elevated 5-HT may suppress DR 
neuronal firing through the activation of 5-HT1 
autoreceptors [63], or that ethanol may 
enhance GABA transmissions to the DR [59]. 
Considering LHb glutamatergic neurons target 
both GABAergic and serotonergic neurons in 
the raphe nucleus [64], we propose that etha-
nol may, through the activation of LHb-DR 
GABAergic circuit, inhibit serotonergic neurons. 
Ultimately, this may contribute to the underly-
ing mechanism connecting serotonin with etha-
nol reward and aversion.

The circuit linking the LHb and DR has also 
been of great interest in other neurobiological 
functions that are related to DR serotonin neu-
rotransmission, including cognitive and emo-
tional functions, pain sensitivity and sleep and 
circadian rhythm regulation [65]. It is notewor-
thy to investigate the function of LHb-DR in 
binge alcohol drinking and the associated 
symptoms such as anxiety, depression or 
hyperalgesia.

Also, there are reciprocal connections between 
the LHb and the raphe. The 5HT-2c receptor is 
also widely distributed in the LHb [12]. We 
recently reported that serotonin increased glu-
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tamate release in the LHb via the activation of 
5-HT 2, 3 receptors. 5-HT modulates glutama-
tergic transmissions to LHb neurons or stimu-
lates the LHb via activation of 5-HT 2/3 recep-
tors [66, 67]. These studies emphasize the 
regulatory role of 5-HT signaling on LHb neu-
rons. However, the role of the LHb-raphe circuit 
in ethanol-related behaviors has not been well 
explored. 

LH inputs on ethanol-activated neurons in the 
LHb

Ethanol could excite LHb neurons through 
enhanced glutamate transmission to LHb neu-
rons [25]. The LHb receives inputs from the LH 
[31], which consists of heterogeneous cell pop-
ulations, including glutamate and GABA, or 
neuropeptides, including orexin, melanin-con-
centrating hormone, neurotensin and galanin 
[68]. To label the LH excitatory neurons, we 
used AAV-CaMKIIa-eGFP with a CaMKIIα pro-
moter as a presynaptic tracer, which exhibits 
expression primarily in excitatory neurons. We 
found that LH axonal varicosities expressed 
vGluT2, forming button-like structures on LHb 
neurons [69]. Also, vGluT2 was extensively 
expressed in the cell body of LHb neuron, indi-
cating LHb neurons are glutamatergic. More 
importantly, ethanol significantly increased the 
percentage of the neurons with cFos and 
vGluT2 double staining in all vGluT2+ cells but 
did not significantly alter the density of vGluT2+ 
inputs around LHb cells, suggesting that the 
ethanol-induced excitation of LHb neurons 
occurs via enhanced glutamate transmission 
but not by increased number of the excitatory 
terminals. Ethanol-induced enhancement of 
glutamate transmission in the LHb neurons is 
mediated by the D1 receptor [25]. Also, the LH 
is sensitive to low-dose ethanol: acute oral 
administration of low (0.75 g/kg) but not higher 
(2.5 g/kg) doses of ethanol-enhanced orexin 
expression in the LH [70]. However, it remains 
unclear whether ethanol directly activates LH 
glutamatergic neurons. Functionally, optoge-
netic stimulation of the LH-LHb pathway pro-
duced real-time place avoidance [31], suggest-
ing the LH-LHb circuit may produce aversive 
behavioral phenotypes. A lesion in the LH-LHb 
circuit increased voluntary ethanol consump-
tion [71], suggesting a link between this path-
way and alcohol’s aversive properties. 

Conclusion

We report that a low-dose of ethanol activates 
LHb neurons that project to the VTA, RMTg, and 
raphe and that these LHb neurons receive 
excitatory projections from the LH. These 
results extend our knowledge on how a low-
dose of alcohol specifically affects the LHb, at a 
cellular and circuit level. 
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